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Interacting growth walk: A model for hyperquenched homopolymer glass?
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We show that the compact self-avoiding walk configurations, kinetically generated by the recently intro-
duced interacting growth walk~IGW! model, can be considered as members of a canonical ensemble if they
are assigned random values of energy. Such a mapping is necessary for studying the thermodynamic behavior
of this system. We have presented the specific heat data for the IGW, obtained from extensive simulations on
a square lattice; we observe a broad hump in the specific heat above theu point, contrary to expectation.
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Linear polymers in a poor solvent are known@1# to as-
sume globular configurations below a tricritical temperat
Tu , called theu point. These globules acquire denser mi
mum energy configurations at lower temperatures. In
case of random heteropolymers, the ‘‘quenched’’ random
teractions between the constituent monomers frustrate
evolution of the globules towards their minimum energy co
figurations. They are thus forced to freeze into higher ene
configurations~local minima!. In fact, the heteropolyme
globules serve as ‘‘toy models’’ for protein folding phenom
enon@2#. It has been shown recently@3# that even homopoly-
mer globules can freeze into glassy states, due to a
generated disorder brought about by the compe
interactions and chain connectivity during the cooling p
cess. In this sense, the freezing of a homopolymer globu
said to be analogous to that of a structural glass.

In a Monte Carlo study of this freezing process, we m
choose a configuration from a canonical ensemble of in
acting self-avoiding walks~ISAW! @4# which represents a
linear polymer in equilibrium with a thermal bath at a tem
peratureT ~say, >Tu). Then, using a standard dynamic
algorithm @5#, we may relax the chosen configuration at
temperature preset~i.e., quenched! to a desired value les
thanTu ; deeper the quench, more difficult and time consu
ing it would be to realize a globular configuration. On t
other hand, the interacting growth walk~IGW! @6# is a sim-
pler but more efficient algorithm for generating compact
globular self-avoiding walks~SAW!; they are generated, ste
by step, by sampling the locally available sites with app
priate Boltzmann factors, exp(bGnNN

m e0), where bG
21 is the

‘‘growth’’ temperature,nNN
m (1<m<z21) is the number of

nonbonded nearest neighbor~NBNN! contacts the sitem will
make, if chosen, on a lattice of coordination numberz and
2e0 is the attractive energy associated with any NBNN co
tact.

In this paper, we show that these kinetically genera
IGWs represent the frozen configurations of a homopolym
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globule with a self-generated disorder. Contrary to expec
tion, our simulations on a square lattice indicate an exc
specific heat, characterizing these frozen states, above tu
point. In fact, this simple model demonstrates that a me
ingful statistical mechanical description of an irreversib
growth process involves an element of self-generated di
der brought about by ergodicity breaking of the system.

The growth of an IGW starts by first ‘‘occupying’’ an
arbitrarily chosen siter0 of a regulard-dimensional lattice of
coordination numberz whose sites are initially ‘‘unoccu-
pied’’ ~by monomers!. The first step of the walk is taken in
one of thez available directions by choosing an unoccupi
nearest neighbors~NN! of r0, say r1, at random and with
equal probability. Let the walk be nonreversing so that it h
a maximum ofz21 directions to choose from for the nex
step. Let$r j

mum51,2, . . . ,zj% be the unoccupied NN’s avail
able for thej th step of the walk. Ifzj50, the walk cannot
grow further because it is geometrically ‘‘trapped.’’ It is
therefore, discarded and a fresh walk is started fromr0. If
zjÞ0, the walk proceeds as follows:

Let nNN
m ( j ) be the number of NBNN sites ofr j

m . Then,
the probability that this site is chosen for thej th step is given
by

pm~r j ![
exp@bGnNN

m ~ j !e0#

(
m51

zj

exp@bGnNN
m ~ j !e0#

, ~1!

where the summation is over all thezj available sites. At
‘‘infinite’’ temperature (bG50), the local growth probability
pm(r j ) is equal to 1/zj and thus, the walk generated will b
the same as the kinetic growth walk@7#. However, at finite
temperatures, the walk will prefer to step into a site w
more NBNN contacts. We have illustrated this local grow
rule in Fig. 1~a! for IGW on a square lattice. Lower th
growth temperature, less is the attrition~see the inset of Fig.
2! that the walk suffers while also being able to grow in
more compact configurations. Moreover, it has been sho
@6# that a u point for this walk exists, and that the wal
belongs to the same universality class~i.e., has the same
values of the universal exponentsn and g) as the SAW
above, at and below theu point.

hi
,

©2003 The American Physical Society02-1



ttic
f.

s
es
ls
ta

a

e

fu

e.
a-
e
ct

r in
re.
n
-

ted
le,
a
lity

an

cally
use
lity

er

y
ite

t-
e

e
,

-

the

NARASIMHAN, KRISHNA, RAJARAJAN, AND MURTHY PHYSICAL REVIEW E 67, 011802 ~2003!
We have repeated the IGW simulations on a square la
for walks uptoN58000, much longer than reported in Re
@6# and with better statistics. In Fig. 2, we have shown theN
dependence of the exponentn(N) obtained from the mean
squared radius of gyration data, for various values ofbG in
the range 3–10. We have estimated the asymptotic value
this exponent as simple polynomial extrapolations of th
n(N) values, and presented them in Fig. 3, along with a
those obtained forb50, 1, 1.5, and 2 from the earlier da
reported in Ref.@6#.

The transition from the SAW phase (n53/4) to the col-
lapsed walk phase (n51/2) seems to be taking place over
narrow range ofbG values (;3.5<bG<;5.0), but this
could still be due to limitations of our numerical work. Th
asymptotic estimates ofn could improve not only with
longer walks but also with larger number of success

FIG. 1. A simple illustration of the IGW algorithm for genera
ing walks from the origin, denoted by the open circle, at a giv
growth temperaturebG

21 . ~a! The sitesA, B, andC are available for
making the fifth step. Choosing the siteA will lead to one NBNN
contact, whereas choosing the sitesB or C will lead to none. Hence,
the sitesA, B, and C will be chosen with probabilitiesebG/(2
1ebG), 1/(21ebG), and 1/(21ebG), respectively.~b! The prob-
ability of growing this configuration is given by pb

5(1/4)(1/3)2(1/2)2(ebG/@21ebG#)2(ebG/@11ebG#). ~c! The prob-
ability of growing this configuration, which is identical to~b!, is
given bypc5(1/4)(1/3)5(e2bG/@21e2bG#).

FIG. 2. The trend towards the asymptotic values of the expon
n for various values ofbGs (53.0, 3.5, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2
4.3, 4.4, 4.5, 5.0, and 10.0!, from top to bottom. Inset: semiloga
rithmic plot of the attrition constant as a function ofbG . The data
seem to suggest a form,l IGW}exp(2abG), wherea is a constant.
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walks, and this could result in narrower transition regim
The u point for the IGW corresponds to a growth temper
ture given bybG;4.5, which is close to our earlier valu
(;4) @6#. Thus, we see that IGW has all the three distin
phases~extended,u point and collapsed! of SAW, realizable
by tuning the growth temperaturebG

21 .
However, the IGW does not represent a homopolyme

equilibrium with its environment at some bath temperatu
Because, the set of allN-step IGWs generated at a give
growth temperatureZIGW(N;bG) is not equivalent to the ca
nonical ensemble of ISAWs,ZISAW(N;b), for some bath
temperatureb21. For example, in Figs. 1~b! and 1~c!, we
have shown two identical configurations which are expec
to occur with the same probability in a canonical ensemb
but are in fact grown with different probabilities. This is
consequence of the fact that the local growth probabi
pj (r j ) of making thej th step to a siter j depends on all the
previous sites visited. Hence, the probability of generating
IGW configuration,C[$r0 ,r1 , . . . ,r j , . . . %, has to be writ-
ten asPIGW(N,C)5) j 51

N pj (r j ;r0 ,r1 , . . . ,r j 21). Nonethe-
less, there must be a correspondence between the kineti
generated IGW and the canonical ISAW, especially beca
the former can be tuned to belong to the same universa
classes as the latter.

Let EG[bGe0 denotes the dimensionless energy p
NBNN contact at the growth tepmperaturebG

21 . Then, an
N-step IGW configurationC having a total ofNc(C) such
contacts will have an energyEG(C)5EGNc(C). As illustrated
in Figs. 1~b! and 1~c!, configurations with the same energ
are generated with different probabilities. We may rewr
the growth probabilityPIGW(N,C) as follows:

PIGW~N;C!5)
j 51

N

pj~r j ;r0 ,r1 , . . . ,r j 21! ~2!

[eE(C)Nc(C)PSAW~N!, ~3!

where PSAW(N)[z21(z21)2(N21) is the probability of
generating anN-step SAW configuration andE(C) is the en-

n
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FIG. 3. The collapse scenario of IGW as brought out by
temperature dependence ofn.
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ergy per contact to be assigned to the configuration if it w
to be considered as a member of a canonical ensemble.

E~C![
1

Nc~C! (
j 52

N

ln@~z21!pj~r j ;r0 ,r1 , . . . ,r j 21!#.

~4!

It is now clear that different configurations with the sam
number contacts could be assigned different values ofE(C)
because their growth probabilities are different. In oth
words, for a given value of the growth parameterEG , the
mapping of IGW to ISAW gives rise to a distribution of th
dimensionless energy per contactE.

Assuming thate0 is a constant, a distribution inE corre-
sponds to a distribution inb. This implies that the IGW
configurations grown at a given temperaturebG

21 can be con-
sidered as ISAW configurations, but sampled at temperat
drawn from a distribution inb. We have discussed this re
cently for IGW on a honeycomb lattice@8#. We have shown
that a sharply peaked distribution inb can be associated wit
any givenbG.0 ~the broadest distribution, numerically ob
tained for bG5`, peaks at b;1.21 with an FWHM
;0.03). In the athermal limit (bG50), the IGW corre-
sponds to ISAW at a unique temperature given byb5 ln 2, a
result obtained first by Pooleet al. @9#. Since the distribution
in b is sharp, the peak value may be taken to provid
well-defined canonical or ‘‘bath’’ temperature at which mo
of the IGW configurations can be considered as ISAW c
figurations. The ones that correspond to different tempe
tures will have to be equilibrated at the peak temperatur

Alternatively, if IGW were to be considered as an ISAW
then it should represent an equilibrium configuration a
uniquely defined bath temperature. We fix the bath temp
ture b by assuming that the peak position of the distributi
in E can be identified withbe0. There is noa priori reason to
assume that the average energy per contact for the equ
rium configuration should be the same ase0, a parameter

FIG. 4. Dimensionless specific heat as a function of bath te
peratureT[b21. The sharp peak atT;1 corresponds tobG

;4.5, and hence to theu-collapse transition. The continuous line
a guide to the eye. Inset: inverse of bath temperatureb as a function
of the inverse of growth temperaturebG .
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introduced for sampling the locally available sites during
growth. Hence, the distribution inE can be taken to be pro
portional to a distribution ine, peaking ate0.

We have obtained the bath temperatureb(N) and the
width s(N) of the distribution ine as a function ofN for a
given bG , basically from the first and second moments
the distribution in E. Then, we have estimated the
asymptotic values by fitting them to a simple form,y(N)
5y1(A/NB), wherey (5b or s), A, andB are adjustable
parameters. We have presented the estimatedb values as a
function of bG in the inset of Fig. 4. We find that the ful
range ofbGP@0,̀ # is mapped into a narrow range of ba
temperatures,bP@;0.42,;1.12# (P@ ln 2,;1.2#, on honey-
comb lattice @8#!. It may be noted that theu point, bG
;4.5, corresponds tob;1.

From the asymptotic variancess2(b), we have obtained
the specific heat per contactc(b)5b2s2(b), and presented
them in Fig. 4 as a function of the bath temperatureb21.
The sharp peak seen at aboutb;1 corresponds to the col

-

FIG. 5. A schematic illustration of how the growth of an IGW
can be viewed as a hierarchical process. The configurations
coded as strings of 0’s, 1’s, 2’s, and 3’s enclosed within squ
brackets, where the labels 0,1,2, and 3 correspond to steps in
1x, 2y, 2x, and1y directions, respectively. The various paths
the hierarchy are taken with different probabilities~see text!. The
tree is constructed in such a way that the final configurations
numbered in increasing order from left to right. Shown just bel
the tree is the energy landscape for all the five-step walks wh
first step is along the1x direction. Of course, the probability o
realizing a point on the landscape depends on the growth temp
ture bG

21 . The global minimum energy (522) configurations are
indicated by their respective codes. And below this is a schem
picture of the energy landscape for asymptotically long walks.
the case of IGW, the number of available~or realizable! final con-
figurations decreases as the walk proceeds to grow. This is i
trated by shaded regions becoming progressively darker. Exa
which point on the landscape is finally reached is decided by
value ofbG

21 . In the case of ISAW, however, all the configuration
having their energies within an interval~schematically indicated by
the shaded region! determined byb21 will be sampled.
2-3
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lapse transition at theu point. This, in fact, validates the
view that a definite bath temperature can be associated
the IGW.

But, there is no such known transition that can be ass
ated with the excess specific heat seen as a broad h
above theu peak, because this region is in the SAW phase
far as the universal exponents are concerned~Fig. 3!. It is
therefore of interest to understand what is responsible for
excess specific heat. Recently, hyperquenched glasses
been shown@10# to exhibit excess specific heat~Fig. 4 of
Ref. @10#!, strikingly similar to what we have observed fo
the IGW ~Fig. 4! above theu point. The dimensionless en
ergy per contactE(C) defined in Eq.~4!, is indeed an averag
of such values that can be evaluated during the growth
cess. This implies that a distribution ofE can be associate
with every configuration generated. Moreover, the IGW co
figurations are clearly much more compact~see Fig. 1 of
Ref. @6#! than the typical SAWs belonging to the same u
versality class. It is therefore reasonable to consider them
‘‘frozen’’ globules.

It may be noted that the correspondence betweenbG and
b whose existence is dictated by Eq.~4! forms the basis of
this study. And, the fact that the full range ofbGP@0,̀ #
maps into a finite range of canonicalbP;@0.42,1.12# has
subtle physical implications. For example, as depicted in F
5, the growth of an IGW can also be considered as a hie
chical approach towards realizing a particular configurati
Every step taken reduces the number of available config
tions, or equivalently, restricts the accessible region of
energy landscape in a progressive manner. This implies
irreversible growth is equivalent to breaking the ergodicity
the system. The probability of taking a certain path in t
hierarchy depends on the tuning parameter,bG . On the other
hand, in the canonical ensemble picture, we sample all
configurations whose energies lie within an interval defin
by the bath temperatureb21 ~schematically illustrated in
Fig. 5!. In particular, we expect to sample only those co
e,

.
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figurations with global minimum energy whenb2150. In
contrast, withbG

2150, the IGW algorithm will generate a
few zero energy~athermal! configurations as well, beside
those with global minimum energy; hence, the correspond
b21 will be greater than zero. And, larger the value of t
coordination numberz of the lattice, smaller will be the num
ber of such athermal configurations, and hence larger wil
the value ofb21 to which it corresponds. Similarly, the dis
tribution of NN contacts for the IGW configurations gene
ated atbG50 deviates from that obtainable for SAW, an
hence the correspondingb will be an z-dependent nonzero
value.

In summary, we have shown that the IGW configuratio
can be considered as members of a canonical ensemble~i.e.,
as ISAW configurations! if the energy per contact can b
considered as a random variable. In general, a meanin
statistical mechanical description of an irreversible grow
process involves an element of self-generated disorder.
signature of this is seen as a broad hump in the specific
above theu point. That these configurations are generated
an hierarchical manner, as implied by the specific grow
rule, provides additional support to the conjecture that th
may be taken to represent hyperquenched polymer confi
rations. Conformational dynamics of IGW could throw fu
ther light on this conjecture. In fact, the IGW seems to illu
trate the generic possibility of a growth process giving rise
hyperquenched states of a system, if it is faster than
configurational relaxation.
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