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Interacting growth walk: A model for hyperquenched homopolymer glass?
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We show that the compact self-avoiding walk configurations, kinetically generated by the recently intro-
duced interacting growth waldGW) model, can be considered as members of a canonical ensemble if they
are assigned random values of energy. Such a mapping is necessary for studying the thermodynamic behavior
of this system. We have presented the specific heat data for the IGW, obtained from extensive simulations on
a square lattice; we observe a broad hump in the specific heat abo9epthiat, contrary to expectation.
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Linear polymers in a poor solvent are knojh| to as-  globule with a self-generated disorder. Contrary to expecta-
sume globular configurations below a tricritical temperaturetion, our simulations on a square lattice indicate an excess
T,, called thed point. These globules acquire denser mini- specific heat, characterizing these frozen states, aboveé the
mum energy configurations at lower temperatures. In thepoint. In fact, this simple model demonstrates that a mean-
case of random heteropolymers, the “quenched” random iningful statistical mechanical description of an irreversible
teractions between the constituent monomers frustrate tH@owth process involves an element of self-generated disor-
evolution of the globules towards their minimum energy con-der brought about by ergodicity breaking of the system.
figurations. They are thus forced to freeze into higher energy The growth of an IGW starts by first “occupying” an
configurations(local minima. In fact, the heteropolymer arbitrarily chosen site, of a regulard-dimensional I“attlce of
globules serve as “toy models” for protein folding phenom- coordination numberz whose sites are initially “unoccu-

enon[2]. It has been shown recen{l@] that even homopoly- pied” (by monqmer}; The fi.rst step of thg walk is taken i.n
mer globules can freeze into glassy states, due to a selfne of thez available directions by choosing an unoccupied

generated disorder brought about by the competin nearest neighboreNN) of ro, sayry, at random and with

. : . L . . _%qual probability. Let the walk be nonreversing so that it has
interactions and chain connectivity during the cooling pro "2 maximum ofz— 1 directions to choose from for the next

cess. In this sense, the freezing of a homopolymer globule 'gtep Letr™m=1,2 2.} be the unoccupied NN's avail
. j =4 4 -

Salldn t;) fﬂir?tgaggﬁgssttj dt?f ?;ii ;Zggﬁéalpggizsss we mayable for thejth step of the walk. Ifz;=0, the walk cannot
) . . ’ . “Ygrow further because it is geometrically “trapped.” It is,
chqose a confl_gL_Jratlon from a canonlca! ensemble of Intert'herefore, discarded and a fresh walk is started frgmif
a_lctlng self-av0|_d|ng v_vf'ilk_s{ISAV_\/) [4] which represents a 2,#0, the walk proceeds as follows:

linear polymer in equilibrium with a thermal bath at a tem-

_ , , Let nn(j) be the number of NBNN sites of". Then,
perat_ureT (say, =T,). Then, using a standa_rd dyljamlcal the probability that this site is chosen for tjtl step is given
algorithm [5], we may relax the chosen configuration at apy
temperature presdt.e., quenchedto a desired value less

thanT,; deeper the quench, more difficult and time consum-

ing it would be to realize a globular configuration. On the exd Benin(i) €]

other hand, the interacting growth wallGW) [6] is a sim- Pm(rj)=— ' )
pler but more efficient algorithm for generating compact or > exd Bshin(i) o]

globular self-avoiding walk§SAW); they are generated, step m=1

by step, by sampling the locally available sites with appro-

priate Boltzmann factors, exgéniyeo), where,BE,l is the  where the summation is over all the available sites. At
“growth” temperature,nijy(1=m=<z—1) is the number of “infinite” temperature (8g=0), the local growth probability
nonbonded nearest neighd®BNN) contacts the siten will Pm(r;) is equal to 1Z; and thus, the walk generated will be
make, if chosen, on a lattice of coordination numbemnd the same as the kinetic growth wdlk]. However, at finite
— €9 Is the attractive energy associated with any NBNN con-temperatures, the walk will prefer to step into a site with
tact. more NBNN contacts. We have illustrated this local growth
In this paper, we show that these kinetically generatedule in Fig. 1a) for IGW on a square lattice. Lower the
IGWs represent the frozen configurations of a homopolymegrowth temperature, less is the attritiGgee the inset of Fig.
2) that the walk suffers while also being able to grow into
more compact configurations. Moreover, it has been shown
*Email address: sinoo@magnum.barc.ernet.in [6] that a @ point for this walk exists, and that the walk
'Permanent address: Materials Science Division, Indira Gandhbelongs to the same universality cla@®., has the same
Centre for Atomic Research, Kalpakkam 603 012, Tamilnaduyvalues of the universal exponenisand y) as the SAW
India. above, at and below the point.
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FIG. 1. A simple illustration of the IGW algorithm for generat- I -
ing walks from the origin, denoted by the open circle, at a given - 2V yapse = 10
growth temperatur@g® . (a) The sitesA, B, andC are available for 1.0 . - bl
making the fifth step. Choosing the sitewill lead to one NBNN ) . ) . 1 . 1 . L . 1
contact, whereas choosing the siBeer C will lead to none. Hence, 0 2 4 8 8 10
the sitesA, B, and C will be chosen with probabilitie$BG/(2 BG

+efo), 1/(2+ePs), and 1/(2+ePe), respectively.(b) The prob-
ability of growing this configuration is given byp,
=(1/4) (1/3P(1/2)*(ePel[ 2+ ePe])2(ePe/[ 1+ ePe]). (c) The prob-
ability of growing this configuration, which is identical {®), is
given by p.= (1/4)(1/3P(e?Pe/[ 2+ e?q)).

FIG. 3. The collapse scenario of IGW as brought out by the
temperature dependence mf

walks, and this could result in narrower transition regime.
The 6 point for the IGW corresponds to a growth tempera-
We have repeated the IGW simulations on a square latticture given byBs~4.5, which is close to our earlier value
for walks uptoN=_8000, much longer than reported in Ref. (~4) [6]. Thus, we see that IGW has all the three distinct
[6] and with better statistics. In Fig. 2, we have shownkhe phasegextendedg point and collapsedof SAW, realizable
dependence of the exponenfN) obtained from the mean by tuning the growth temperatu;@gl.
squared radius of gyration data, for various valueggfin However, the IGW does not represent a homopolymer in
the range 3-10. We have estimated the asymptotic values efjuilibrium with its environment at some bath temperature.
this exponent as simple polynomial extrapolations of thes@ecause, the set of all-step IGWs generated at a given
v(N) values, and presented them in Fig. 3, along with alsarowth temperatur@,sw(N;B¢) is not equivalent to the ca-
those obtained foB=0, 1, 1.5, and 2 from the earlier data nonical ensemble of ISAWSZ,saw(N;B), for some bath

reported in Ref[6].
The transition from the SAW phase € 3/4) to the col-

temperature3 1. For example, in Figs. (b) and Xc), we
have shown two identical configurations which are expected

lapsed walk phaser=1/2) seems to be taking place over ato occur with the same probability in a canonical ensemble,

narrow range ofg values (~3.5<Bg=<~5.0), but this

but are in fact grown with different probabilities. This is a

could still be due to limitations of our numerical work. The consequence of the fact that the local growth probability

asymptotic estimates of could improve not only with

p;(r;) of making thejth step to a site; depends on all the

longer walks but also with larger number of successfulprevious sites visited. Hence, the probability of generating an
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IGW configurationC={rq,ry, ... fj, ...}, has to be writ-

ten asP|GW(N,C)=H}\‘=1pj(r]- Tosl1, - . Fj—1). Nonethe-
less, there must be a correspondence between the kinetically
generated IGW and the canonical ISAW, especially because
the former can be tuned to belong to the same universality
classes as the latter.

Let &=pBgep denotes the dimensionless energy per
NBNN contact at the growth tepmperatuﬂgl. Then, an
N-step IGW configuratiorC having a total ofN.(C) such
contacts will have an enerdy(C) = EgN(C). As illustrated
in Figs. 1b) and Xc), configurations with the same energy
are generated with different probabilities. We may rewrite
the growth probabilityP,;w(N,C) as follows:

N
PIGW(N;C):J_H:L Pi(rjiro s« Fj-1) (2

FIG. 2. The trend towards the asymptotic values of the exponent

v for various values of3gs (=3.0, 3.5, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2,
4.3, 4.4, 4.5, 5.0, and 10,0from top to bottom. Inset: semiloga-

rithmic plot of the attrition constant as a function 8¢ . The data
seem to suggest a formy,gw=exp(—aBs), wherea is a constant.

=" NP5 (N), ()

where Pgaw(N)=z"1(z—1) (N1 is the probability of
generating am-step SAW configuration ané(C) is the en-
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FIG. 5. A schematic illustration of how the growth of an IGW
can be viewed as a hierarchical process. The configurations are
coded as strings of 0's, 1's, 2’s, and 3’s enclosed within square
ergy per contact to be assigned to the configuration if it werdrackets, where the labels 0,1,2, and 3 correspond to steps in the

to be considered as a member of a canonical ensemble. +Xx, —y, —x, and+y directions, respectively. The various paths in
the hierarchy are taken with different probabilitisee text The

FIG. 4. Dimensionless specific heat as a function of bath tem-
peratureT=p8"1. The sharp peak alT~1 corresponds tq3g
~4.5, and hence to thé-collapse transition. The continuous line is
a guide to the eye. Inset: inverse of bath tempergBuas a function
of the inverse of growth temperatug; .

1 N tree is constructed in such a way that the final configurations are
&0)= E In[(z— 1)pj(rj P ST J’j—l)]- numbered in increasing order from left to right. Shown just below
Nc(C) =2 the tree is the energy landscape for all the five-step walks whose

(4) first step is along thetx direction. Of course, the probability of
realizing a point on the landscape depends on the growth tempera-
It is now clear that different configurations with the sameture 8;*. The global minimum energy=f —2) configurations are
number contacts could be assigned different valueS(6f indicated by their respective codes. And below this is a schematic
because their growth probabilities are different. In otherpicture of the energy landscape for asymptotically long walks. In
words, for a given value of the growth paramefgy, the the case of IGW, the number of availaliler realizabl¢ final con-
mapping of IGW to ISAW gives rise to a distribution of the figurations decreases as the walk proceeds to grow. This is illus-
dimensionless energy per contatt trated by shaded regions becoming progressively darker. Exactly
Assuming thate, is a constant, a distribution ifi corre- ~ Which point on the landscape is finally reached is decided by the
sponds to a distribution ir8. This implies that the IGW value of,Bgl. In the case of ISAW, however, all the configurations
configurations grown at a given temperat;@@l can be con- having their engrgies Within an intelrv@chematically indicated by
sidered as ISAW configurations, but sampled at temperaturetge shaded regiordetermined bys™= will be sampled.
drawn from a distribution in3. We have discussed this re-
cently for IGW on a honeycomb lattid@]. We have shown introduced for sampling the locally available sites during its
that a sharply peaked distribution fhcan be associated with growth. Hence, the distribution ifi can be taken to be pro-
any givenBg>0 (the broadest distribution, numerically ob- portional to a distribution ire, peaking ateg.
tained for Bg=o, peaks atB~1.21 with an FWHM We have obtained the bath temperaty@@N) and the

~0.03). In the athermal limit §c=0), the IGW corre-
sponds to ISAW at a unique temperature givendsyln 2, a
result obtained first by Poolet al.[9]. Since the distribution

width o(N) of the distribution ine as a function oiN for a
given B¢, basically from the first and second moments of
the distribution in & Then, we have estimated their

in B is sharp, the peak value may be taken to provide @symptotic values by fitting them to a simple forg(N)
well-defined canonical or “bath” temperature at which most =Y+ (A/N®), wherey (= or o), A, andB are adjustable
of the IGW configurations can be considered as ISAW confparameters. We have presented the estimgtedlues as a
figurations. The ones that correspond to different temperafunction of S in the inset of Fig. 4. We find that the full
tures will have to be equilibrated at the peak temperature. range of3g[0,>] is mapped into a narrow range of bath
Alternatively, if IGW were to be considered as an ISAW, temperatures3e[~0.42~1.17] (e[In2,~1.2], on honey-
then it should represent an equilibrium configuration at acomb lattice[8]). It may be noted that th& point, Bg
uniquely defined bath temperature. We fix the bath tempera=4.5, corresponds tg~1.
ture B by assuming that the peak position of the distribution ~From the asymptotic varianceg’(3), we have obtained
in £ can be identified withBe,. There is naa priori reasonto  the specific heat per contact8) = 820*(8), and presented
assume that the average energy per contact for the equilithem in Fig. 4 as a function of the bath temperatgre’.
rium configuration should be the same s a parameter The sharp peak seen at ab@i1 corresponds to the col-
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lapse transition at the point. This, in fact, validates the figurations with global minimum energy whe® *=0. In
view that a definite bath temperature can be associated wittontrast, with3g'=0, the IGW algorithm will generate a

the IGW. few zero energy(athermal configurations as well, besides
But, there is no such known transition that can be associthgse with global minimum energy; hence, the corresponding

ated with the excess specific heat seen as a broad hump-1 || pe greater than zero. And, larger the value of the

above they peak, because this region is in the SAW phase agqordination numbez of the lattice, smaller will be the num-

far as the universal exponents are concertiéd. 3. Itis  por of such athermal configurations, and hence larger will be
therefore of interest to understand what is responsible for thig, o \,21ue of3~* to which it corresponds. Similarly, the dis-
excess specific heat. Recently, hyperquenched glasses hayg,tion of NN contacts for the IGW configurations gener-
been showr{10] to exhibit excess specific hedig. 4 of 410y at3.=0 deviates from that obtainable for SAW, and
Ref. [10]), strikingly similar to what we have observed for hence the corresponding will be an zdependent nonzero
the IGW (Fig. 4) above the¢ point. The dimensionless en- | - o

ergy per contacf(C) defined in Eq(4), is indeed an average |, summary, we have shown that the IGW configurations
of such values that can be evaluated during the growth Pr%an be considered as members of a canonical ensdile

cess. This impllies that a distribution 6fcan be associated oo |gaw configurationsif the energy per contact can be
with every configuration generated. Moreover, the IGW con-.gnsidered as a random variable. In general, a meaningful

figurations are clearly much more compdsee Fig. 1 of gatistical mechanical description of an irreversible growth
Ref. [6]) than the typical SAWs belonging to the same uni-ocess involves an element of self-generated disorder. The

versality class. It is therefore reasonable to consider them @§gnature of this is seen as a broad hump in the specific heat

“frozen” globules. above thed point. That these configurations are generated in
It may be noted that the correspondence betwég@nd 4, hierarchical manner, as implied by the specific growth
B whose existence is dictated by He) forms the basis of je provides additional support to the conjecture that they
this study. And, the fact that the full range B €[0°]  may be taken to represent hyperquenched polymer configu-
maps into a finite range of canonicgle ~[0.42,1.12 has  ations. Conformational dynamics of IGW could throw fur-
subtle physical implications. For example, as depicted in Figiher fight on this conjecture. In fact, the IGW seems to illus-
5, the growth of an IGW can also be considered as a hieragate the generic possibility of a growth process giving rise to

chical approach towards realizing a particular ConﬁgUra_‘tionhyperquenched states of a system, if it is faster than the
Every step taken reduces the number of available Conf'gur"%:'onfigurational relaxation.

tions, or equivalently, restricts the accessible region of the

energy landscape in a progressive manner. This implies that S.L.N. is grateful to R. Chidambaram and M. Rama-
irreversible growth is equivalent to breaking the ergodicity ofnadham for inspiring him to study the physics of growth
the system. The probability of taking a certain path in thewalks. A part of the computational work was carried out at
hierarchy depends on the tuning paramesgy, On the other the Institut fu Festkaperforschung. K.P.N. thanks Fors-
hand, in the canonical ensemble picture, we sample all thehungszentrum “Jigh for the hospitality extended to him
configurations whose energies lie within an interval definedduring March—April 2002. He also thanks V. Sridhar for
by the bath temperatur@ ! (schematically illustrated in fruitful discussions. We thank P. V. S. L. Kalyani for help in
Fig. 5. In particular, we expect to sample only those con-preparing the figures.
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